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The problem of thermocapillary convection that develops in a thin stationary liquid lay- 
er, heated locally from above,hasbeen considered in [i] in the constant layer thickness ap- 
proximation. The exact solution of eouations of capillary convection that had been obtained 
in [I] for large blarangoni numbers (M >> i) made it possible to determine the convection rate 
and the dimensions of the convective cell. The solution given in [I], which holds for the 
Prandtl numbers Pr ~> i, has been generalized in [2] to encompass the case of liquid metals 
(Pr < I). The problem from [i] was considered in its rigorous statement in [3] with an al- 
lowance for the curvature of the free liGuid surface. This made it possible to determine the 
effect of gravity and surface deformation on the cell structure and define the applicability 
scope of the simple analytical solution [I, 2]. On the basis of the results obtained in [1-3], 
a dyanmic thermocapillary model of the vacuum-arc cathode spot has been proposed in [4]. This 
model relates the high speed of a cathode spot moving over the electrode surface to the high 
rate of convective heat transfer. It is interesting to examine the problem of steady-state 
thermocapillary convection in a thin, horizontal moving liquid layer with local heating from 

above. 

As in [i], we shall limit our Considerations to a two-dimensional model for M >> I. If 
the liquid is immobile, two symmetric thermocapillary cells are formed on either side of the 
heating line. The liquid motion initiated by the capillary force encompasses a finite length, 
the cell length 7 -~ hM I/2 >> h, where h is the layer thickness. The maximum flow velocity 

develops at the surface and is equal to 

v o ~ ( ~ ' h T z I h ~ l ) l l 2 ~  

where a' = --d~/dT~ a is the surface tension coefficient, AT = To -- TI is the temperaturedrop at 
the initial cross section, X is the temperature diffusivity, and ~ is the dynamic viscosity. 
According to [i], the vortex intensity is characterized by the following volumetric (per unit 

length) discharge of the circulating liquid: 

Qc ~- O.15(hcz' AT%h]) 1/2 = 0 A 5 Z  M1/% 

The question arises whether the cellular convection structure persists if the liquid layer 
heated from above moves and is characterized by the discharge Q # 0. The cell on the side 
of incoming flow may persist~ at least if Q ~< Qc" Its structure will change, but one can 
expect that its length will in this case diminish slightly, so that, as before, we can use 
the boundary layer approximation to describe the convection. The cell on the other side of 
the heating line may, generally, be destroyed since liquid particles from the heating loca- 
tion may drift away to infinity~ We shall solve the problem in the approximation of constant 

layer thickness. This is justified if [3] 

( a ' A T / p g h  2) ~ t ,  

where O is the liquid density, and g is the acceleration due to gravity. Assume that the liq- 
uid layer is bounded by its free surface, y = 0, and the vessel bottom, y = --h. We place 
the x axis in opposition to the temperature gradient along the layer. For a liouid with the 
Prandtl number Pr ~> i, the initial system of equations and boundary conditions is given by [1] 

aT " a r  o~r  (i) Ov x OVy __ Op OZvx Op ~ O, Vx - - "  a--f + ~ - 0' a~ - -  ~ a ]  ' ay ~ + v~ ~ % ay ~, 

aT y=o v:c (x, - -  h)  = vu (x, - -  h) = 0,  T ( x , - - h ) = T  1, ~ = 0 ,  ( 2 )  

avx d~ (%' O T 
*1 -~y u=o d~ o x  y~o" 
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The latter equation in (2) expresses the continuity of the stress tensor at the free surface~ 
The kinematic condition at the free surface is in this case reduced to the requirement for 

v (x, 0) = 0; as will be shown in the solution, this condition is satisfied automatically. 
W{th an allowance for (2), we have the following integral on the basis of the continuity 
equation: 

0 

,t v~dy = Q = const. (3) 
--h 

For the cell on the side of oncoming flow, Q < 0, while Q > 0 for the flow on the opposite 
side from the heating location. By integrating the equations of motion and continuity and 
considering (3), we find the expressions for the velocity 

3~_~" [Or~ G , ( y ) _ ~ h ~ ( y i _ h ~ ) ,  vV=~h--~\Ozi/v=o Vx = ~ 4h~ ~ Ox ]y=o " 

w h e r e  G = ( 1 / 3 ) y ( y  + h)  2. We i n t r o d u c e  t h e  d i m e n s i o n l e s s  v a r i a b l e s  0 = (T -- T ~ ) / A T ,  x * = x /  
h ,  and  y '  = y / h .  By s u b s t i t u t i n g  (4)  i n  t h e  e q u a t i o n  o f  h e a t  t r a n s p o r t  i n  t h e  l i q u i d ,  we o b -  
t a i n  (the orimes will be subsequently omitted) 

[_G,(a0 2,loo G~a~O~ ao 4 020 (5) 
~7)0 + q (i -- y )j ~7 + \ ~ 7 0  ~7  = 3M aui, 

where q = 2Qr]/~' ATh. For q = 0, Eq. (5) has an exact particular solution [i] describing the 
thermocapillary cell, whose length is determined from the one-dimensional linear spectral 
problem. For q # 0, the variables cannot be separated, and the exact solution in explicit 
form cannot be found. In order to obtain an approximate solution of (5), we expand 9 in a 
series with respect to y and reject terms with ~y3 and higher-power terms. Then, having satis- 
fied (2), we arrive at the parabolic approximation of the temperature profile across the lay- 
er: 

0 ~ X(x)(l - y~) = X ~ .  (6) 

As will be shown below, approximation (6) is sufficient for an approximate analysis of 
the cell structure on the oncoming flow side. After substituting (6) in (5), we obtain a dif- 
ferential equation for determining X from the requirement for orthogonality of the residue of 

the equation with respect to ~. The above approach, which is similar to the procedure used 
in deriving Galerkin's equations, makes it possible to find the solution as a function of x 
in explicit form. Instead of ~ in (6), we can use a polynomial of a higher power or, for 
instance, the exact eigenfunction of the nonperturbed problem. The numerical coefficients 
would change in the equation for X, but neither its structure nor, which is most important, 
its solution at the physical level of rigorousness would change. However, this would hardly 
be worthwhile since the solution can be represented in the form (6) only with an accuracy to 
terms with ~y2 inclusively. 

Omitting the mathematical operations, we write the equation for X: 

X X " ' +  2X '2 - -  ~X' - -  A X  = 0 ,  (7) 

w h e r e  

~ 28.8q, A = i Oh i / l ~ ,  l o ~ _ 0 . 3 h / M .  (7 ~) 

It is necessary to find the bounded (with finite first and second derivatives) solution of 
(7) that would satisfy the condition X(0) = i. The parameter ~ appears in (7) in a regular 
way. Assuming that it is small, we use the perturbation theory: 

X ~ Xo+ ~XI+  ~ X i + . . .  

As will be seen below, the actual parameter of the expansion is the Q/Qc raLio. This 
parameter is small for oncoming flow velocities v < v c. The solution of the equation for 
that satisfies the stipulated conditions is given by 

Xo : (l ~,: x/lo) 2. (8) 
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In the case where the temperature decreases with an increase in x, the solution (8) with the 
minus sign should be used. The form of this expression coincides with that of the exact solu- 

tion [i]. According to (8), the quantity ~o has the sense of the characteristic linear dimen- 
sion of the cell, or, more accurately, it is equal to the cell length for ~ = 0. (It should 
be noted that the numerical coefficient 0.3 appearing in the 7o definition (7') is in fairly 

good agreement with the coefficient 0.52 obtained by more accurate calculations [i]. ~is 

betokens the advisability of using the chosen approximation (6). In calculating the follow- 
ing terms of the expansion, it is convenient to use a new independent variable, ~ = i -- x/~o. 
Then, the equation for X~ is written in the following manner: 

" ' ~ = 0 ,  G ( I )  = O- ~X~ + 8~X~--8X~ + h ~ 

Its solution having a physical meaning is given by 

2/0 x~=-~ml~l. (9) 

Omitting the mathematical operations, we provide the equation for X~ and its solution: 

2Zo ~'-X~ + 8~X~ --  8X~ + ( - ~  (In I~l + 4 m"l~l - 5) = o, 

l ~- 
X~ = T 

(Io) 

According to (9) and (i0), as was mentioned above, the actual parameter of the expansion of the 

solution is the quantity 
= ~lol9h ~ 0.29Q/Q~. 

For simplicity of notation, we shall give the results of the solution analysis in an approxi- 

mation which is linear with respect to c. The second approximation involves quantitative 
corrections without altering the character of the distributions. In order to find the roots 
(determine the cell length), the solution should be written in the following form: 

X = (B -- ein I~IY. ( i l )  

With an accuracy to the value of ~E 2, this expression coincides with the sum of (8) and (9). 
It is evident from (Ii) that, for c < 0, there is a double root, ~ = ~(0 < ~i < I). In the 
~ ! ~ ! i interval, the terms of the expansion of X and their derivatives are smooth func- 
tions. In other words, solution (ii) describes in the above interval the thermocapillary 

~ii has the root --i < ~2 < cell formed in the liquid on the oncoming flow side. If c > 0, ~ 
0. In this case, the solution in the ~2 < ~ < i interval is singular and has no physical 
meaning, i.e., more stringent analysis is necessary for describing the convection pattern 

down stream from the heat source. We shall limit our analysis to the first case (s < 0). 

At the point ~ = ~, the perturbation of the liquid temperature due to the source van- 
ishes, i.e., the quantity A~ = i -- ~ represents the dimensionless length (in ~o units) of 
the thermocapillary cell. The dependence of A~ on E is given in Table I, which indicates that 

the rate of reduction in the cell length diminishes with an increase in IsI. Substituting 

(ii) in (4), we find the final expression for the velocity field: 

! 
vdv~ = (~ + t~ [ln ~) ( l  + ~ )  (l + y)( l  + 3y) - 0.4718 I(i - y=), (12) 

vdv~ = ~ i +.-~-I y (l + y) t  

where v = 1.66v is the maximum velocity at the free surface at the initial section. 
m c 

It is evident from (12), that the liquid motion consists of a superposition of the 

thermocapillary vortex on Poiseuille flow. Let us examine the following fact. For ~ = O, 
at the cell boundary ~i = 0, the horizontal velocity component vanishes together with X and 
X', so that the entire thermal flux from the source vanishes as well. According to (12), for 
E # 0, v x vanishes for ~ = ~o > ~i. The quantities ~o -- ~i and X(~o) are small. For in- 
stance, if ~ =--0.2, we have ~o = 0.298, ~i = 0.265, X(~o) = 0.003, and ~o -- ~I § 0 for isl § 
0. It is inadvisable to draw conclusions on the basis of the difference between ~o and ~I 
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TABLE 1 

i~I [ o o,o~.! o,o~ I o,1 0,2 I 0,3 

i,o 

�89 

~ 0,5 ~o ~ 0 

Fig. i Fig. 2 

or to examine details of the convection pattern near the cell boundary within the framework 
of this approach. In order to clarify this, we shall discuss the admissibility of using the 
boundary layer approximation for describing cellular convection. According to (12)~ v. is the 

value of -(h/~o)V m. The condition v << v can be violated only in th~ = vicinity of t~e line 

where v = 0. It is evident from (I~)that v ~ v in a strip with the width Ay ~ h/lo around X 

the lin~ in question. In this region of low ~relative to v m) velocities, we must use the Nav- 
ier--Stokes equations. Since this region is small (~M I/2) in comparison with the cell area, 

one could expect that the error caused by the use of inexact equations in this region would 
be small in describing the cell properties as a whole. However, this is generally not so if 
one considers the structure of the transitional region between the cell and the unperturbed 

flow. The limiting value of the coordinate where v x 0 is the point ~ = ~o ~'~ '~ , = . ~n~re].ore it 
only makes sense to consider the obtained solution for ~ > go. 

For the assigned temperature drop, the reduction in the cell length for e # 0 causes an 
increase in the gradient of the surface tension coefficient, and, consequently, the shearing 
stress at the free surface. Therefore, the convection rate also increases. This is illustrat- 
ed in Fig. I, where curves 1 represent the temperature distribution (the dashed curve per- 
tains to ~ = 0, while the solid curve pertains to ~ = -0.2), while curves 2 represent the cor- 

responding Vx/V m distributions at the free surface. For a moving liquid, the drop in the tem- 
peratureand the convection rate with increasing distance from the initial section is steeper 
than the drop governed by the parabolic and linear laws, respectively, for c = 0. Figure 2 
shows the streamlines calculated on the basis of (12) for g = --0.2 in a ($, y) coordinate 

system. The line at which v = 0 is shown by the dashed curve. At the points of intersection $ 
with this curve, the streamllnes have a vertical tangent (at s = 0, the flow reversal line 
y = --1/3 has a lower position). The motio~ region can be divided into two zones by a stream- 
line issuing from the point (~o, 0) in the direction perpendicular to the axis of abscissas 

(the boundary line is not shown, and the diagram provides only the nearby streamlines). The 
upper zone constitutes a " floating" thermocapillary cell with the total liquid flow equal 
to zero at any section ~ = const. The lower zone represents a streamtube with the assigned 

discharge Q, in which everywhere Vx < 0. Roughly speaking, the oncoming flow dives, as it 
were, under the vortex cell formed by the capillary force, compressing it relatively heavily 
in the longitudinal, and slightly in the transverse, directions~ It is evident from Fig. 2 

that, for ~ ~ ~o, the solution describes satisfactorily the convection pattern. It is inter- 
esting to note that the vortex intensity does not change, as measured by the magnitudes of 
circulating liquid flow. The depicted convection pattern on the oncoming flow side suggests 
the possibility of existence of a thermocapillary cell on the other side of the heating lo- 
cation under certain conditions. 
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EFFECT OF SPATIAL MODULATION OF THE TEMPERATURE DISTRIBUTION ON 

THE STABILITY OF TWO-DIMENSIONAL STEADY FLOW IN A HORIZONTAL 

LAYER OF A TWO-COMPONENT LIQUID 

V. A. Batishchev, V. V. Kolesov, 
S. K. Slitinskaya, and V. I. Yudovich 

UDC 536.25 

We study the stability of two-dimensional steady flow in a horizontal layer of viscous 
heat-conducting liquid containing an admixture. For constant temperatures of the boundaries 
of the layer the convection equations admit a steady-state solution (mechanical equilibrium) 
which is stable if the temperature gradient is not too large. Under spatial modulation of the 
temperature distribution the liquid cannot be in equilibrium, and a spatially periodic convec- 
tive regime is established in it for arbitrarily small temperature gradients [i, 2]. The pur- 
pose of the present article is to find the critical values of the temperature gradient for 
which this primary regime becomes unstable and a secondary regime develops in the liquid. A 
similar problem was solved in [2] for a homogeneous liquid when both boundaries of the layer 

are free surfaces. 

i. Formulation of the Problem. Suppose a viscous heat-conducting liquid containing an 
admiXture fills an infinite plane horizontal layer of thickness h. The lower boundary of the 
layer is a solid surface whose temperature is modulated by small-amplitude perturbations which 
are periodic along the layer. The free upper surface of the layer is not deformed (taking ac- 
count of the deformability is important only for thin layers of liquid and in weak gravita- 
tional fields [3]), and it is free of tangential stresses. The atmosphere above the layer is 
a stationary gas having a quasistationary temperature distribution. The heat flux Q along the 
vertical in the atmosphere far from the free surface is assumed given (for heating from below 
Q > 0). We assume that the temperature and the normal component of the heat flux are continu- 
ous through the free surface. There is no flow of the admixture through the boundaries of the 
layer. The liquid as a whole cannot be displaced parallel to the bottom. The amount of admix- 

ture in the liquid is specified. 

, v }, the pressure ~ the temperature The problem of determining the velocity v = {v x Vyl 
T of the liquid, the temperature | of the atmosphere, and tee concentration S of the admixture, 
reduced to dimensionless form and written in the Boussinesq approximation, has the form 

av 
aT + (v, V) v = - -  VII + Av + e (GT - -  G,S), 

aT i 
a-F + (v,V) T = > T A T ,  d i v v = 0 ,  A(9----0, 

as ~ div (VS ~SVT),  at + (v, V) S + 

(1.1) 
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